Pages

Wednesday, January 09, 2013

MCP23008 IO Expander - Interrupt control


Now I have written the function to read and print the interrupt capture register's high nibble.  So if I press the keys in row 0, 1, 2, 3, I will get the following outputs.

Interrupt flag nibble = 1111
Interrupt flag nibble = 1110
Interrupt flag nibble = 1101
Interrupt flag nibble = 1011
Interrupt flag nibble = 0111


pi@raspberrypi ~/python_programs/test_basic $ sudo python tiox28.py
*** Decimal Keypad Test v2.0 TL Fong 2013jan08 ***
press keypad  4 times.
Key pressed =  01
Key pressed =  04
Key pressed =  07
Key pressed =  10
End of keypad test.
Interrupt flag nibble =  1111
Interrupt flag nibble =  1110
Interrupt flag nibble =  1101
Interrupt flag nibble =  1011
Interrupt flag nibble =  0111
...


So far so good.

 
# *****************************************************************************
# *** tiox28.py ***
# Program  - Test MCP23008 and MCP23017
# Version  - 2.8
# Date     - 2012nov30
# Update   - 2013jan08
# Author   - tlfong01
# File     - tiox28_2013jan08.py
# Blog     - http://tlfong01.blogspot.hk/
# Purpose  - test basics of Raspberry Pi GPIO
# License  - GNU GPLv3
# Hardware - Raspberry Pi Model B Revsion 2.0 [2012oct/nov/dec]
# Software - Raspbian Wheezy (2012sep15), Python 2.7.3
#            GPIO 0.4.1a http://pypi.python.org/pypi/RPi.GPIO/0.4.1a
# Wiring   - RPi Board Numbering
#              P1-02 5V, P1-04 5V, P1-06 Gnd
#              P1-01 3V3, P1-03 I2C SDA1, P1-05 I2C SCL1
#              P1-08 UART TxD (MCP23017 Reset)
#              P1-10 UART RxD (MCP23017 INTB)
#              P1-12 RPi GPIO_GEN1 (BCM18) LED (P1-12 > LED > 330R > Gnd)
#              P1-14 Gnd
#              P1-16 GPIO_GEN4 - Buzzer, 3V3 5mA (P1-16 > Buzzer > Gnd)
#              P1-18 GPIO_GEN5 Button (3V3 > 10K > Contact 1/2 > 330R > Gnd)
#              P1-20 Gnd
#              P1-22 GPIO_GEN6 - MCP23008 INT / MCP23017 INTA             
# *****************************************************************************
# *** Import Python modules ***
import smbus
import sys
import RPi.GPIO as GPIO
from time import sleep
import select # interrupt module
# *****************************************************************************
# * GPIO naming and setting up *
# * RPi.GPIO setting *
GPIO.setmode(GPIO.BOARD) # Use RPi GPIO numbering, Not BCM numbering
GPIO.setwarnings(False)  # Disable linux's "pin already in use warning"
# * P1 pins numbering *
RPiGPIOgen1 = 12 # Brown  (P1-12, BCM GPIO 18) LED
RPiGPIOgen4 = 16 # Yellow (P1-16, BCM GPIO 23) Buzzer
RPiGPIOgen5 = 18 # Green  (P1-18, BCM GPIO 24) Button
RPiGPIOgen6 = 22 # Blue   (P1-22, BCM GPIO 25) IOx Interrupt
RPiTxD = 8 # Orange (P1-08) UART TxD
RPiRxD = 10 # Yellow (P1-10) UART RxD
# * IO device pins assignment *
LEDpin = RPiGPIOgen1
BuzzerPin = RPiGPIOgen4
ButtonPin = RPiGPIOgen5
InterruptPin = RPiGPIOgen6
TxDpin = RPiTxD
RxDpin = RPiRxD

# * IO pins list *
OutputPinList = [LEDpin, BuzzerPin, TxDpin]
InputPinWithNoPullUpList = [ButtonPin, RxDpin]
InputPinWithPullUpList = [InterruptPin]
# *****************************************************************************
# * Global constants *
# * Loop counters *
TwoTimes = 2
FourTimes = 4
EightTimes = 8
TenTimes = 10
TwentyTimes = 20
FiftyTimes = 50
OneHundredTimes = 100
TwoHundredTimess = 200
FourHundredTimes = 400
# * Elapse times *
TwentyMilliSeconds = 0.02
FiftyMilliSeconds = 0.05
TenthSecond = 0.1
QuarterSecond = 0.25
HalfSecond = 0.5
OneSecond = 1
OneAndHalfSeconds = 1.5
TwoSeconds = 2
OnTime = TenthSecond
OffTime = QuarterSecond
ButtonDebouncingTime = QuarterSecond
TestTime = FiftyMilliSeconds
# * Nibble naming *
LowNibble = 0
HighNibble = 1
BothNibble = 2 # full byte of 8 bits
# * Nibble constants *
HighNibble1LowNibble0 = 0xf0
HighNibble0LowNibble1 = 0x0f
# * LED and buzzer states *
Off = False
On = True
# * Button states *
ButtonPressed = False
ButonReleased = True

# *****************************************************************************
# * GPIO functions *
# Note: 5V0 max = 50 mA, 3V3 max = 300 mA, per GPIO pin max = 17mA source, 12mA sink
# * Setup, read, write GPIO pins *
setupOutputPin = lambda oPin: GPIO.setup(oPin, GPIO.OUT) # set GPIO pin as output
setupInputPinWithNoPullUp = lambda iPin: GPIO.setup(iPin, GPIO.IN, pull_up_down=GPIO.PUD_OFF) # set GPIO pin as input, no pull up
setupInputPinWithPullUp = lambda iPin: GPIO.setup(iPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # set GPIO pin as input, with pull up
writeOutputPin = lambda oPin, oValue: GPIO.output(oPin, oValue) # write value to output pin
setupWriteOutputPin = lambda oPin, oValue: (setupOutputPin(oPin), writeOutputPin(oPin, oValue)) # set and write
readInputPin = lambda iPin: GPIO.input(ButtonPin) # read value from input pin
def SetupGPIOpins(outputPinList, inputPinWithNoPullUpList, inputPinWithPullUpList): # set up GPIO pins in InputPinList and OutputPinList
    for oPin in outputPinList:
       setupWriteOutputPin(oPin, Off)
    for iPin in inputPinWithNoPullUpList:
        setupInputPinWithPullUp(iPin)
    for iPin in inputPinWithPullUpList:
        setupInputPinWithPullUp(iPin)
def SetupGPIO(): # set up GPIO pins
     SetupGPIOpins(OutputPinList, InputPinWithNoPullUpList, InputPinWithPullUpList )
# * pulse and echo functions *
def pulsePin(oPin, onTime, offTime): # blink LED or beep buzzer
    writeOutputPin(oPin, On)
    sleep(onTime)
    writeOutputPin(oPin, Off)   
    sleep(offTime)
def echoPin(iPin, oPin): # echo input pin to output pin, e.g. button to LED or buzzer
    while True:
        if readInputPin(iPin) == ButonReleased:
            pass
        else:
            pulsePin(oPin, OnTime, OffTime)
            break
        continue
def togglePin(oPin, toggleTime): # toggle pin
    writeOutputPin(oPin, On)
    sleep(toggleTime)
    writeOutputPin(oPin, Off)   
    sleep(toggleTime)
# * Test Buzzer, LED, Button functions *
def TestBuzzer(): # beep 4 times
    SetupGPIO()
    for i in range (FourTimes):
        pulsePin(BuzzerPin, OnTime, OffTime)
def TestLED(): # blink 8 times
    SetupGPIO()
    for i in range (EightTimes):
        pulsePin(LEDpin, OnTime, OffTime)
def TestButtonEchoBuzzer(): #
    SetupGPIO()
    for i in range (TenTimes):
        echoPin(ButtonPin, BuzzerPin)         
def TestButtonEchoLED(): #
    SetupGPIO()
    for i in range (TenTimes):
        echoPin(ButtonPin, LEDpin)
def TestToggleTxDpin():
    while True:
        togglePin(TxDpin, TwoSeconds)

# GPIO Interrupt function !!! not yet tested !!!
def TestInterruptPinFallingEdgeDetection(): # !!! Not tested !!!
    GPIO.cleanup() # set all input pins no pull up, disable all interutp detection setting
    SetupGPIO()  
    GPIO.set_low_event(InterruptPin) # set up low level detection
    for i in range(30):
        if GPIO.event_detected(InterruptPin):
     break
        else:
            print "No interrupt detected.", i
            sleep(1)
     continue
    GPIO.set_low_event(InterruptPin, enable = False)  # disable detection
    print "End of test, or interrupt detected"
# *****************************************************************************
#  * Beep functions *
def Beep(count):
    for i in range(count):
        pulsePin(BuzzerPin, OnTime, OffTime)
   
def StartBeep():
    Beep(TwoTimes)
    sleep(1)
def EndBeep():
    Beep(FourTimes)
def OneBeep():
    Beep(1)
def FourBeeps():
    Beep(4)
# *****************************************************************************
# * MCP23008 / MCP23017 *
# * Bash script using i2cTools's i2cset command to toggle GPIO pins *
#!/bin/bash
# i2cset -y 1 0x20 0x00 0x00
# count=0
# while [ $count -lt 10 ];
# do
#  i2cset -y 1 0x20 0x0a 0x00
#  sleep 0.5
#  i2cset -y 1 0x20 0x0a 0xff
#  sleep 0.5
#  let count++
# done
# To run i2c-X commands in user mode: sudo chmod 666 /dev/i2c-X
# sudo chmod 666 /dev/i2c-1
# To detect I2C device base addresses
# sudo i2cdetect -y 1
# * Setup SMBus *
I2C_BUS_NUMBER = 1 # P1-03 = SDA1, P1-05 = SCL1
smBus1 = smbus.SMBus(I2C_BUS_NUMBER) # global variable, cannot be set by a function
# * Register base addresses *
MCP23017BaseAddress1 = 0x22 # 1 LED, 1 button
MCP23008BaseAddress1 = 0x24 # 2 unipolar stepping motors
MCP23008BaseAddress2 = 0x25 # 1 decimal keypad
# * Port type *
PortA = 0
PortB = 1
# * Byte patterns *
# * Data bytes *
AllOutput = 0x00
AllHigh = 0xff
AllLow =  0x00
AlternateHighLow = 0xaa
AlternateLowHigh = 0x55
# * Direction setting bytes *
HalfHighHalfLow = 0xf0
HalfLowHalfHigh = 0x0f
Nibble1HighNibble2Low = 0xf0
Nibble1LowNibble2High = 0x0f
HighNibbleInputLowNibbleOutput = 0xf0
# * MCP23008/MCP23017 register address offsets *
InputOutputDirection = 0
InputPolarity = 1
InterruptOnChangeEnable = 2
InterruptOnChangeDefaultValue = 3
InterruptOnChangeMode = 4
Configuration = 5
PushPullOpenDrain = 6
InterruptFlag = 7
InterruptCapture = 8
PortStatus = 9
OutputLatch = 10
# * MCP23008/MCP23017 Band0/Band1 register address offset arrays *
RegisterAddressOffsetArray0 = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,          
     0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a]
              
RegisterAddressOffsetArray1 = [0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x11, 0x13, 0x15, 0x17, 0x19,          
     0x01, 0x03, 0x05, 0x07, 0x09, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a]
# * Setup MCP23008/MCP23017 ports all output *
def SetupMCP23008PortAllOutput(registerBaseAddress):
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InputOutputDirection, PortA, AllOutput)
def SetupMCP23017BothPortAllOutput(registerBaseAddress):
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InputOutputDirection, PortA, AllOutput)
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InputOutputDirection, PortB, AllOutput)
# * Write/Read MCP23008/MCP23017 registers *
def WriteDataByte(registerBaseAddress, registerAddressArray, dataRegisterIndex, portType, dataByte):
    if (portType == PortA) | (portType == PortA):
       addressOffset = registerAddressArray[dataRegisterIndex]
    if (portType == PortB):
       addressOffset = registerAddressArray[dataRegisterIndex + 11]
    smBus1.write_byte_data(registerBaseAddress, addressOffset, dataByte)
def ReadDataByte(registerBaseAddress, registerAddressArray, dataRegisterIndex, portType):
    if (portType == PortA):
       addressOffset = registerAddressArray[dataRegisterIndex]
    if (portType == PortB):
       addressOffset = registerAddressArray[dataRegisterIndex + 11]
    dataByte = smBus1.read_byte_data(registerBaseAddress, addressOffset)
    return dataByte
# * Test MCP23008/MCP23017 toggle port functions *
def ToggleMCP23008GP(registerBaseAddress, toggleTime, toggleCount):
    SetupMCP23008PortAllOutput(registerBaseAddress)
    for i in range(toggleCount):
        WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, AllHigh)
 sleep(toggleTime)
        WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, AllLow)
  sleep(toggleTime)
def ToggleMCP23017GP(registerBaseAddress, toggleTime, toggleCount):
    SetupMCP23017BothPortAllOutput(registerBaseAddress)
    for i in range(toggleCount):
        WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, AllHigh)
        WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortB, AllHigh)
 sleep(toggleTime)
        WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, AllLow)
        WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortB, AllLow)
  sleep(toggleTime)
def TestToggleMCP23008GP():
    ToggleTime = 0.5
    ToggleCount = 4
    ToggleMCP23008GP(MCP23008BaseAddress1, ToggleTime, ToggleCount)
def TestToggleMCP23017GP():
    ToggleTime = 0.5
    ToggleCount = 4
    ToggleMCP23008GP(MCP23017BaseAddress1,  ToggleTime, ToggleCount)
# * MCP23008/MCP23017 Interrupt functions *
# * MCP23008 Interrupt setting *
def EnableInterruptOnChangeHighNibble(registerBaseAddress):
    EnableInterruptHighNibble = 0xf0
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InterruptOnChangeEnable, PortA, EnableInterruptHighNibble)
def SetInterruptOnChangeDefaultHighNibble(registerBaseAddress):
    DefaultValueHighNibble = 0xf0 # GP4~7 (keypad rows input) interrupt default value = High
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InterruptOnChangeDefaultValue, PortA, DefaultValueHighNibble)

def SetInterruptOnChangeCompareDefaultHighNibble(registerBaseAddress):
    InterruptOnChangeDefaultValueHighNibble = 0xf0 # GP4~7 change from default value will cause interrupt
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InterruptOnChangeMode, PortA, InterruptOnChangeDefaultValueHighNibble)
def SetInterruptOutputPushPull(registerBaseAddress): # interrupt pin open drain, no auto add inc, no slew rate
    PushPull  = 0b00111010 # 0x32, seq/slew disabled, interrupt output drive drive (push pull) active High
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, PushPullOpenDrain, PortA, PushPull)
def SetInterruptOutputOpenDrain(registerBaseAddress): # interrupt pin open drain, no auto add inc, no slew rate
    OpenDrain = 0b00111000 # 0x34, seq/slew disabled, interrupt output open drain (don't care active High or Low)
    WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, PushPullOpenDrain, PortA, OpenDrain)
def SetupInterruptHighNibbleCompareDefaultValueOpenDrainOutput(registerBaseAddress):
    EnableInterruptOnChangeHighNibble(registerBaseAddress)
    SetInterruptOnChangeDefaultHighNibble(registerBaseAddress)
    SetInterruptOutputOpenDrain(registerBaseAddress)

# * Port A Interrupt checking *
def ReadInterruptFlagHighNibble(registerBaseAddress):
    interruptFlagByte = ReadDataByte(registerBaseAddress,  RegisterAddressOffsetArray0, InterruptFlag, PortA) 
    interruptFlagNibble = interruptFlagByte >> 4
    return interruptFlagNibble  
   
def ReadInterruptCaptureHighNibble(registerBaseAddress):
    interruptCaptureByte = ReadDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InterruptCapture, PortA)   
    interruptCaptureNibble = interruptCaptureByte >> 4
    return interruptCaptureNibble 
def ConvertIntegerToFourBitPattern(integer):
    FourBitPattern = [""]
    for k in range(4):
        FourBitPattern = [i+j for i in ['0','1'] for j in FourBitPattern]
    return FourBitPattern[integer]
def DetectInterrupt(registerBaseAddress):
    while True:       
        interruptFlagNibble = ReadInterruptFlagHighNibble(registerBaseAddress)
        interruptCaptureNibble = ReadInterruptCaptureHighNibble(registerBaseAddress)
        print "Interrupt flag nibble = ", ConvertIntegerToFourBitPattern(interruptCaptureNibble)
  sleep(2)
def TestDetectInterrupt():
    RegisterBaseAddress =  MCP23008BaseAddress2
    SetupInterruptHighNibbleCompareDefaultValueOpenDrainOutput(RegisterBaseAddress)
    DetectInterrupt(RegisterBaseAddress)
# *****************************************************************************
# * Unipolar Stepping Motor 28BYJ48/NPM-PF35/PX245 *
# Unipolar Stepping Motor Switching Sequence
# 1. Wave sequence = 1 - 3 - 2 - 4 (A-, B-, A+, B+)
# 2. Full step sequence = 13 - 14 - 24 - 23 (A-B-, A-B+, A+B+, A+B-)
# 3. Half step sequence  = 13 - 1 - 14 - 4 - 24 - 2 - 23 - 3
# 4. One step swing = 1 - 3 - 1 - 3 (A-, B-, A-, B-)
# Winding        A-(1)    A+(2)    B-(3)   B+(4)    COM
# NPM PF35       Black    Yellow   Brown   Orange   Red
# 28BYJ48        Blue     Pink     Yellow  Orange   Red 
# PX245          Black    Green    Blue    Red      Yelow/White
# * Convert decimal pin number to hex *
def convert1PinToHex(p): # convert 1 of 8 high pin to hex
    hexString = 0x01
    for count in range(p-1):
    hexString = hexString << 1
    return hexString
def convert2PinToHex(p1, p2):  # convert 2 of 8 high pins to hex
    return (convert1PinToHex(p1) | convert1PinToHex(p2))
def convert2PinToHighNibble(p1, p2):  # convert 2 of 8 high pins to high nibble
    lowNibble = convert1PinToHex(p1) | convert1PinToHex(p2)
    highNibble = lowNibble << 4
    return highNibble
# * Move unipolar stepping motor *
def WriteMotorWindingWaveSequence1324(RegisterBaseAddress, NibbleType, StepCount, StepTime): # move motor using 13-24 sequence 
    # Set port all output
    WriteDataByte(MCP23008BaseAddress1, RegisterAddressOffsetArray0, InputOutputDirection, PortA, AllOutput)
    if NibbleType == LowNibble:
 hexString1 =  convert2PinToHex(1, 3)
   hexString2 =  convert2PinToHex(2, 4)
    else:
 hexString1 = convert2PinToHighNibble(1, 3)
 hexString2 = convert2PinToHighNibble(2, 4)
    for i in range(StepCount):
        WriteDataByte(MCP23008BaseAddress1, RegisterAddressOffsetArray0, OutputLatch, PortA, hexString1)
    sleep(StepTime)
        WriteDataByte(MCP23008BaseAddress1, RegisterAddressOffsetArray0, OutputLatch, PortA, hexString2)
        sleep(StepTime)
def WriteMotorWindingFullStepSequence13232414(RegisterBaseAddress, NibbleType, StepCount, StepTime): #move motor using 13-23-24-14 sequence
    # Set port all output
    WriteDataByte(MCP23008BaseAddress1, RegisterAddressOffsetArray0, InputOutputDirection, PortA, AllOutput)
    if NibbleType == LowNibble:
     motorWindingActivationPatternArray = (0x05, 0x06, 0x0a, 0x09)
    else:
 motorWindingActivationPatternArray = (0x50, 0x60, 0xa0, 0x90)
    for i in range(StepCount):
 for pattern in motorWindingActivationPatternArray:
            WriteDataByte(MCP23008BaseAddress1, RegisterAddressOffsetArray0, OutputLatch, PortA, pattern)
     sleep(StepTime)
def TestConvert1PinToHex(): # test convert 1 high pin to hex
    print "*** Testing 1 pin number decimal 0 ~ 7 converted to hexdecimal 0x01 ~ 0x80"
    for d in range(8):
    print hex(convert1PinToHex(d))
def TestConvert2PinToHex(p1, p2): # test convert 2 high pins to hex
    print "*** Testing 2 pin numbers decimal 0 ~ 7 converted to hexdecimal"
    print "Pin 1 = ", p1, "Pin 2 = ", p2
    print "Hex = ", hex(convert2PinToHex(p1, p2))
def TestConvert2PinToHighNibble(p1, p2): # test convert 2 of 8 high pins to high nibble
    print "*** Testing 2 pin numbers decimal 0 ~ 7 converted to high nibble"
    print "Pin 1 = ", p1, "Pin 2 = ", p2
    print "HighNibble = ", hex(convert2PinToHighNibble(p1, p2))
def MoveTwoMotors(RegisterBaseAddress): 
 OneBeep()
 WriteMotorWindingWaveSequence1324(MCP23008BaseAddress1, LowNibble, TwentyTimes, FiftyMilliSeconds)
 OneBeep()
 WriteMotorWindingWaveSequence1324(MCP23008BaseAddress1, HighNibble, TwentyTimes, FiftyMilliSeconds)
 # OneBeep()
 # WriteMotorWindingFullStepSequence13232414(MCP23008BaseAddress1, LowNibble, TwentyTimes, FiftyMilliSeconds)
 # OneBeep()
 # WriteMotorWindingFullStepSequence13232414(MCP23008BaseAddress1, HighNibble, TwentyTimes, FiftyMilliSeconds)
def TestMotor():
    MotorRegisterBaseAddress = MCP23008BaseAddress1
    MoveTwoMotors(MotorRegisterBaseAddress)
# *****************************************************************************
# * Decimal keypad *
# Keypad scanning procedure version 1.0
# 1. Set 3 column ports GP0, GP1, GP2 as output (GP3 don't care)
# 2. Set 4 row ports GP4, GP5, GP6, GP7 as input
# 3. Write Low to all column ports
# 4. Wait until any key pressed (pooling or interrupt)
# 5. Find rowNumber and column number
# 6. Calculate key number
# * keypad base address and smBus setting *
keypadRegisterBaseAddress = MCP23008BaseAddress2
keypadSmBus = smBus1
# * Set, write, read keypad pins *
def SetupKeypad(registerBaseAddress):
   HalfInputHalfOutput = 0xf0
   WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, InputOutputDirection, PortA, HalfInputHalfOutput)
   AllLow = 0x00
   WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, AllLow)
def ReadKeypadRows(registerBaseAddress):
    dataByte = ReadDataByte(registerBaseAddress, RegisterAddressOffsetArray0, PortStatus, PortA)
    return dataByte 
def LoopUntilKeyPressAndGetRowDataByte(registerBaseAddress):
    NoPressingKey = 0xf0
    rowDataByte = 0xf0
    while (rowDataByte == NoPressingKey):
        rowDataByte = ReadKeypadRows(registerBaseAddress)
    sleep(0.05) # !!!!! debounce key 50mS !!!!!
    rowDataByte = ReadKeypadRows(registerBaseAddress)
    return rowDataByte
def LoopUntilAnyKeyPressed(registerBaseAddress):
    NoKeyPressed = 0xf0
    rowDataByte = NoKeyPressed
    while (rowDataByte == NoKeyPressed):
        rowDataByte = ReadKeypadRows(registerBaseAddress)
    sleep(0.05) # debouncing time 50mS
def GetRowDataByte(registerBaseAddress):
    rowDataByte = ReadKeypadRows(registerBaseAddress)
    return rowDataByte
def GetRowNumber(rowDataByte):
    rowDataNibble = rowDataByte >> 4
    if rowDataNibble == 0b1110:
        rowNumber = 0
        return rowNumber
    elif rowDataNibble == 0b1101:
        rowNumber = 1
        return rowNumber
    elif rowDataNibble == 0b1011:
        rowNumber = 2
        return rowNumber
    elif rowDataNibble == 0b0111:
        rowNumber = 3
        return rowNumber
    else:
        rowNumber = 99 
 return rowNumber
def GetColumnNumber(registerBaseAddress, oldDataByte):
   WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, 0xf6)
   newDataByte = ReadDataByte(registerBaseAddress, RegisterAddressOffsetArray0, PortStatus, PortA)
   newDataNibble = newDataByte >> 4
   oldDataNibble = oldDataByte >> 4
   # print "New Data Nibble", hex(newDataNibble)
   if newDataNibble == oldDataNibble:
       columnNumber = 0
       return columnNumber
   WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, 0xf5)
   newDataByte = ReadDataByte(registerBaseAddress, RegisterAddressOffsetArray0, PortStatus, PortA)
   newDataNibble = newDataByte >> 4
   oldDataNibble = oldDataByte >> 4
   # print "New Data Nibble", hex(newDataNibble)
   if newDataNibble == oldDataNibble:
       columnNumber = 1
       return columnNumber
   WriteDataByte(registerBaseAddress, RegisterAddressOffsetArray0, OutputLatch, PortA, 0xf3)
   newDataByte = ReadDataByte(registerBaseAddress, RegisterAddressOffsetArray0, PortStatus, PortA)
   newDataNibble = newDataByte >> 4
   oldDataNibble = oldDataByte >> 4
   # print "New Data Nibble", hex(newDataNibble)
   if newDataNibble == oldDataNibble:
       columnNumber = 2
       return columnNumber
   print "New DataByte", hex(newDataByte)
   columnNumber = 99
   return columnNumber
def GetKeyNumber(rowNumber, columnNumber):
    keyNumber = (rowNumber * 3) + (columnNumber + 1)
    return keyNumber
def WaitGetKey(registerBaseAddress, count):
    print "*** Decimal Keypad Test v2.0 TL Fong 2013jan08 *** "
    print "press keypad ", count, "times."
    for i in range (count):
        OneBeep()
        SetupKeypad(registerBaseAddress)
        LoopUntilAnyKeyPressed(registerBaseAddress)
        rowDataByte = GetRowDataByte(registerBaseAddress)
        # print "There is a pressing key, Row data (GP4~7) = ", hex(rowDataByte)
        rowNumber = GetRowNumber(rowDataByte)
        # print "Row number = ", rowNumber
        columnNumber = GetColumnNumber(registerBaseAddress, rowDataByte)
        # print "Column number = ", columnNumber
        keyNumber = GetKeyNumber(rowNumber, columnNumber)
        print "Key pressed = ", '{0:2}'.format(str(keyNumber).zfill(2).rjust(2))
        sleep(0.5)
    FourBeeps()
    print "End of keypad test."
def TestKeypad():
    KeypadRegisterBaseAddress = MCP23008BaseAddress2
    Count = 4
    WaitGetKey(KeypadRegisterBaseAddress, Count)
# *****************************************************************************
# * Main test functions *
# * Setup RPi GPIO *
SetupGPIO()
StartBeep()
# * Part 1 - Test RPi GPIO *
# TestBuzzer() # beep buzzer 4 times
# TestLED() # blink LED 8 tmes
# TestButtonEchoBuzzer() # echo buton with buzzer 10 times
# TestButtonEchoLED() # echo button with LED 10 times
# TestToggleTxDpin() # toggle TxD pin every 2 seconds
# * Part 2 - Test MCP23008/MCP23017 *
# TestToggleMCP23008GP() # toggle MCP23008 output port
# TestToggleMCP23017GP() # toggle MCP23017 output ports
# TestMotor() # move two stepping motors
# TestKeypad() # wait and get key 4 times
# * Part 3 - Test interrupts *
TestKeypad() # wait and get key 4 times
TestDetectInterrupt()
# *****************************************************************************
# End of Program
# *****************************************************************************

.END

No comments:

Post a Comment